翻訳と辞書
Words near each other
・ Frobenius Forster
・ Frobenius group
・ Frobenius Institute
・ Frobenius manifold
・ Frobenius matrix
・ Frobenius method
・ Frobenius normal form
・ Frobenius Orgelbyggeri
・ Frobenius pseudoprime
・ Frobenius solution to the hypergeometric equation
・ Frobenius splitting
・ Frobenius theorem
・ Frobenius theorem (differential topology)
・ Frobenius theorem (real division algebras)
・ Frobenius's theorem (group theory)
Frobenius–Schur indicator
・ Froberg mutiny
・ Froberville
・ Frobisher
・ Frobisher (Doctor Who)
・ Frobisher (surname)
・ Frobisher Bay
・ Frobisher Bay Air Base
・ Frobisher Bay, Northwest Territories
・ Frobisher Lake
・ Frobisher's Farthest
・ Frobisher, Saskatchewan
・ Frobot
・ Frocester
・ Frocester railway station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Frobenius–Schur indicator : ウィキペディア英語版
Frobenius–Schur indicator
In mathematics the Schur indicator, named after Issai Schur, or Frobenius–Schur indicator describes what invariant bilinear forms a given irreducible representation of a compact group on a complex vector space has. It can be used to classify the irreducible representations of compact groups on real vector spaces.
==Definition==

If a finite-dimensional continuous complex representation of a compact group ''G'' has character χ its Frobenius–Schur indicator is defined to be
:\int_\chi(g^2)\,d\mu
for Haar measure μ with μ(''G'') = 1. When ''G'' is finite it is given by
:\sum_\chi(g^2).
The Frobenius–Schur indicator is always 1, 0, or -1. It provides a criterion for deciding whether an irreducible representation of ''G'' is real, complex or quaternionic, in a specific sense defined below. Below we discuss the case of finite groups, but the general compact case is completely analogous.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Frobenius–Schur indicator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.